Немецкая фирма «Пауль Вюрт» 12 марта 2020 года анонсировала строительство в Роттердаме электролитической установки по производству «зелёного» водорода. Установку уже успели испытать и признали годной к запуску в промышленное производство. К 2024 году она должна проработать 16 тысяч часов и произвести 960 тонн газа. Гораздо важней, что в атмосферу не попадет 8 тысяч тонн углерода — именно столько выбрасывается при производстве такого количества водорода.
Да, сейчас водород — это грязное производство. На каждый полученный килограмм водорода выбрасывается от 9 до 10 кг углерода. Такой водород получил название «серого». При этом элемент необходим для производства удобрений, используется в металлургическом производстве и химической промышленности. Сейчас мировое производство водорода составляет чуть более 70 млн тонн в год. Его углеродный след составляет более полумиллиарда тонн CO2.
Светлое будущее грязного продукта
Резкое снижение выбросов СО2 в атмосферу, подразумеваемое Парижским соглашением, зависит от глобального перехода к «зелёной» энергетике. По оценкам WRI (Института мировых ресурсов) на транспорт приходится 15,9% мировых выбросов, на промышленность — 18%, строительство и ЖКХ дают 20,4%. Это значит, что необходимо не только внедрение возобновляемых источников энергии, важно перевести все эти отрасли на энергоресурсы с низкой долей углерода. Без этого снизить антропогенные выбросы вдвое к 2050 году не получится.
Водород — это просто идеальное решение этой проблемы. Результат его сгорания — пар, то есть вода. Более того, самый перспективный получения водорода — электролиз воды. А это создаёт нечто наподобие замкнутого цикла, когда ресурсы газа будут восполняться при его потреблении. Никакой другой «зеленый» энергоресурс не дает такой возможности. Биотопливо, коксовый газ, аммиак — все при сжигании выбрасывают в атмосферу целый букет парниковых газов.
Есть только одна загвоздка: в отличие от нефти или газа, больших запасов водорода в естественных условиях просто нет. Водород сейчас — это результат переработки углеводородов со всем скопом сопутствующих проблем. Самым популярным методом получения этого газа остается паровая конверсия метана (95% получаемого водорода). При этом в атмосферу выбрасывается огромное количество углерода. Оставшиеся 5% приходятся в основном на не менее грязный риформинг нефти и нефтепродуктов. Небольшую долю процента составляют электролиз воды — самый массовый из «зелёных» методов получения водорода — и лабораторные биореакторы.
Такое соотношение не устраивает большинство стран, включившихся в водородную гонку. Поэтому стратегии достижения «безуглеродного» будущего нацелены на получение водорода максимально «зелёным» способом.
Цель — водород
Первой страной, которая сформулировала «водородную стратегию» стала Япония в 2017 году. За ней последовали и другие развитые страны. В 2019 году стратегии появились у Южной Кореи и Австралии, в 2020 году сразу у нескольких стран ЕС, от Голландии и Великобритании до Португалии и Франции. А 12 октября 2020 к этому списку стран присоединилась и Россия.
Так как с ходу перейти к «зелёной» энергетике не получится, программы предусматривают промежуточные меры. В первую очередь, это использование для перевозки и хранения водорода газовой инфраструктуры. Например, добавление 20% водорода к природному газу приведет к снижению выбросов СО2 на 7%.
Другой целью стал транспорт. В норвежской стратегии подчеркивается, что число электромобилей и автомобилей с водородными топливными ячейками должно достигнуть 50 тысяч к 2024 году. Их покупка не облагается НДС, а владельцы не обязаны платить транспортный налог до 2023 года. А Нидерланды планируют в ближайшие пару десятилетий перевести весь общественный транспорт на «водородную» тягу. Помимо этого, разрабатываются многочисленные варианты турбин, работающих на смеси природного газа и/или водорода. По такому же пути идут и другие страны, включая Германию.
Водородный транспорт
При этом у некоторых участников водородной гонки уже есть инфраструктура для водородного транспорта. Французская компания Air Liquide, один из лидеров рынка переработки газа, уже успела установить по всему миру более 120 водородных заправочных станций. Концерн Тойота еще в 2013 году выпустил на рынок водородную модель — «Мираи». В Токио, Лондоне уже давно ходят автобусы на водородных топливных элементах. Скоро к нем должен присоединиться Эдинбург.
В Германии в 2018 году стали регулярно ходить пригородные водородные поезда. Фирма Alstom, которая их выпускала, получила заказ на 27 машин. В Великобритании в 2019 году запустили экспериментальный водородный экспресс. К 2040 году в стране собираются полностью избавиться от парка дизельных локомотивов.
К 2030 году Китай, Южная Корея, Япония и штат Калифорния должны будут выпустить 4,6 млн автомобилей на водородном топливе. Одновременно с производством машин планируется и инфраструктура для них. Только в Калифорнии и Нидерландах будет построено по тысяче водородных заправок.
Несмотря на то, что Россия присоединилась к гонке сравнительно поздно, в 2019 году Росатом и «Трансмашхолдинг» тоже решили запустить производство водородных поездов. РЖД планировало тестировать их на Сахалине. А летом 2020 года в подмосковной Черноголовке наконец открылась первая в стране водородная заправка. За счет этих «первых шагов» в будущем нам пророчат взрывной рост водородного транспорта.
Где еще будут использовать водород?
Важнейший элемент стратегий — это «энергетическая» реформа ЖКХ. В Великобритании первопроходцем станет Лидс: там энергоснабжение будет полностью водородным. А согласно плану H21 North of England газовые сети и транспортное оборудование английского севера также переведут под водород. Водородное отопление 4 млн жилых домов и предприятий снизит выбросы СО2 на 20 млн тонн, хотя и обойдутся в огромную сумму — 30 млрд долларов.
И хотя в стратегиях промышленность и сельское хозяйство практически не упоминаются, ассоциации отраслевых игроков тоже участвуют в выработке «водородного будущего». Предполагается, что уже в 2030 году 10% аммиака для удобрений будет получено «зеленым» способом с помощью электролизеров. В современных домнах во время плавки уже используется сингаз, на 55-58% состоящий из водорода. В ближайшем будущем практически все крупнейшие игроки, от Швеции и ФРГ, до США и Бразилии планируют довести долю водорода до 90% и выше, чтобы по максимуму отказаться от кокса. Эти меры позволят снизить на 10-11% выбросы углерода в атмосферу.
Вместе со странами стратегии пишут и многочисленные производители оборудования для ВИЭ. По одной из них у побережья Нидерландов предлагается соорудить гигаваттные оффшорные ветростанции, напрямую завязанные с электролизным производством водорода. Полученную электроэнергию предлагается распределить по всей Европе в зависимости от локального производства водорода. А чтобы сэкономить потребление энергии, стратегия предлагает подключить солнечный и сырьевой потенциал стран Северной Африки. Углеводороды перерабатывались бы в водород прямо на месте, после чего по новым водородным трубопроводам поступали в Европу. Фактически, ЕС получали бы сырьевой придаток к своей «зелёной» энергетики.
России пока ещё далеко до настолько проработанных программ. Основной упор в современной стратегии делается на экспорт водорода на наиболее перспективные рынки, например японский. В то же время, в энергобюллетенях Аналитического центра при правительстве РФ подчеркивается, что использование водородного топлива позволит снизить на треть энергопотребление на удаленных и малозаселенных территориях. Можно сказать, что сочетание ВИЭ и водорода здесь будет выигрышной стратегией.
Но многое будет зависеть от стоимости производства водорода, которая зависит от технологии получения. Так, стоимость электролиза 1 кг водорода на ветростанции — 4 доллара, с помощью солнечных панелей — 7 долларов. А вот газификация углеводородов и паровая конверсия метана пока обходится всего в 1,5-2,5 доллара.
От серого к синему, желтому и зеленому
Современные «серые» методы получения водорода отрабатывались десятилетиями. Тут даже вопроса не стоит о снижении выбросов углерода — дело в удобстве производства и энергоэффективности.
Как промежуточную меру перехода к безуглеродным способам получения водорода, предлагается дополнить «серый» водород технологией захвата и захоронения углерода (CCS). Такой водород называют «синим». Проблема в том, что технологии CCS совершенно не отработаны. Захваченный углерод предлагают закачивать под землю. Сейчас эти технологии в основном используются для добычи нефти: в обедневшую скважину закачивают СО2, чтобы увеличить добычу. Но, во-первых, «зеленая» энергетика должна увести человечество от постоянной добычи углеводородов, а не увеличить её. А во-вторых, потребности нефтяной промышленности просто не предполагают использование 500 млн тонн углерода.
Гораздо перспективней выглядит получение с помощью АЭС «жёлтого» водорода. Во-первых, в этом случае у нас под рукой есть и пар, и избыток электроэнергии. А во-вторых, электролиз Н2 не даст дополнительных выбросов СО2 в атмосферу. В США из-за понижения расценок на кВт/ч, выработанных с помощью ВИЭ, получение водорода на АЭС уже признано стратегией спасения этой отрасли энергетики. С 2019 года местное Минэнерго выделяет крупные гранты на эксперименты в этой области.
В эту ядерно-водородную гонку потихоньку включаются все ядерные державы. Во Франции и Великобритании крупнейшие операторы и владельцы АЭС также рассматривают вопрос производства «жёлтого» водорода. В России Росатом планирует к 2030 году создать атомную электротехнологическую станцию (АЭТС) производства водорода. Так же в планах у компании создание целой сети ядерно-водородных комплексов на базе уже имеющихся АЭС.
Однако наиболее перспективным считается использование возобновляемых источников для создания дешевого и действительно «зелёного» водорода. На это опираются большинство стратегий перехода к «безуглеродному миру». Насколько все серьезно, говорит проект с сооружением самого большого в мире завода по производству водорода в Саудовской Аравии на базе солнечной электростанции. И это только начало.
Биоводород: отходы превращаются в топливо
Наиболее «хардкорным» способом безотходного производства водорода являются… водоросли. Эксперименты с биореакторами на их основе ведутся уже не первое десятилетие, но результаты пока что не внушают оптимизма.
Потенциально биореакторы способны работать на мусорных и пищевых отходах, тем самым совмещая переработку с получением «чистой» энергии. Лабораторные опыты показывают, что идеальным является двухстадийный процесс: стадия «темной ферментации», когда органика разлагается водорослями под малым воздействием солнечного излучения, и стадия фотоферментации, когда то же самое происходит при «нормальном» излучении. Для каждой стадии нужны свои виды водорослей. Поэтому реактор должен быть мультистадийным. Но пока на каждый килограмм сырья выход в лучшем случае составляет несколько десятков граммов водорода. Водоросли генетически модифицируют, чтобы усилить процессы ферментации, в сырье вводят кислоты и сахара, что удорожает биоректор, но прорыва нет. Увы, сложности биосистем и их «капризность», когда каждый реактор оказывается нетиповым, пока никак не поддаются химикам.
Так что пока наиболее выгодным с точки зрения экологии и технологических затрат остается получение водорода с помощью ВИЭ и АЭС. Это уже готовые технологии, а значит, «зеленый» водород перестал быть экзотической нишей. В ближайшие 15-20 лет мы можем оказаться в «водородном мире». И кто не успеет забраться в этот экспресс, рискует надолго оказаться в аутсайдерах.